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• Proton “Spin Crisis”: only 33(3)(5)% of the proton spin carried by quarks


• i.e. with decomposition


!

• Quark model


!

• Can we reproduce this feature directly from QCD?


• Is this suppression a property of the nucleon, or a universal feature?


Motivation for Investigation of Hadron Spin
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Motivation for Investigation of Hadron Spin
•          is a purely quark-line disconnected contribution


!

!

• Much effort to determine        experimentally


• e.g. COMPASS, HERMES


• A challenge on the lattice


• Usually tackled through stochastic estimation of nucleon 3pt function


• e.g. 
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• Provides a method for determining hadronic matrix elements from energy shifts


• Suppose we want


• Proceed by


!

!

• FH tells us


!

!

• Calculation of matrix element       hadron spectroscopy

Feynman-Hellmann Theorem
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Feynman-Hellmann Theorem
• Most commonly used to determine    terms since


!

• and
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Feynman-Hellmann Theorem
• To access hadron spin fractions, we modify the action to include the axial 

current


!

• FH Theorem then gives


!

• but for a spin-J hadron with polarisation m in the z-direction


!

!

• Also note: reversing hadron polarisation     changing sign of 
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• Nf =2+1 O(a)-improved Clover fermions (“SLiNC” action)


• Tree-level Symanzik gluon action (plaq + rect)


• Results from a single lattice spacing (a~0.074fm), and volume (323 x 64)


• Novel method for tuning the quark masses


• Most results are at the SU(3)-symmetric point


• Connected results also at 360MeV       


• ~350 measurements from 1500 trajectories

Lattice Set-Up



Connected Spin Contributions
• Use existing Nf=2+1 configurations


• Modify the action of the valence quarks only


• Allows for comparison with results using standard 3-point function methods


• For more details see

A. Chambers et al. (QCDSF), arXiv:1405.3019



• Start with nucleon mass v 

Connected Spin Contributions
�

Fit: quadratic in � linear terms give        and�u �d

SU(3) symmetric point, m⇡ ⇡ 470MeV



Connected Spin Contributions

• Linear terms give (unrenormalised):


!

• Compare with the 3-point method using a similar size ensemble


!

• Good agreement, but statistical error a concern
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Connected Spin Contributions
• We can make use of the correlations between the results at different    

obtained on the same set of configurations


• Observe:


!

• And                 can be computed from a ratio of 2-point functions

�

E(�) = E(� = 0) +�E(�)

�q =
@�EH(�)

@�

����
�=0

�EH(�)

C(�, t)

C(� = 0, t)
large t�! / e��EH(�)t



Connected Spin Contributions
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Connected Spin Contributions
• Energy shift v �
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Recall 3-point results:

• Rough agreement

• Possible excited state contamination in 3-point function results?



gA

• Compare with 3-point method
ZA = 0.867(4) [M. Constantinou et al. (in preparation)]
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• Repeat for other hadrons away from 
SU(3)-symmetric point

Connected Spin Contributions
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Connected Spin Contributions - Summary
• Convert quark spin contributions to spin fractions


• using
d�⌃

J
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2JZA = 0.867(4)



Disconnected Spin Contributions
• To compute the disconnected contributions to


• Include operator in action for HMC


• Problem:  the term we have added to the fermion matrix 


!

• does not satisfy      hermiticity


!

!

• and we have a sign problem
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Disconnected Spin Contributions
• Solution: instead add the     hermitian operator to M


!

• Which is fine since we are interested in small perturbations around 


!

• Except that now the correlation functions will pick up a phase


!

• where
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Disconnected Spin Contributions
• Imaginary part of the correlator now ≠ 0


• Real part 


• Using the spin up/down projectors


!

!

• Motivates the correlated ratio
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Disconnected Spin Contributions

ZA = 0.867(4)
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Tensor Charge - Connected
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Tensor Charge - Disconnected

u-quark, spin-up/down, disconnectedu-quark, spin-down, connected

d-quark, spin-up/down, connected - disconnectedu-quark, spin-up/down, connected - disconnected



Tensor Charge - Disconnected

3�qlattdisc = 0.009(79)

SU(3) symmetric point, m⇡ ⇡ 470MeV

ZMS
T (µ = 2GeV) = 0.995(1) �qdisc = 0.003(26)



Summary
• Feynman-Hellmann method 


• Alternative to conventional 3-point function methods for computing matrix elements


• Demonstrated by computing connected and disconnected contributions to 


!

• Advantages


• Simple to implement


• Good control over excited state contamination


• Excellent for studying a single operator in many hadrons 


• Disadvantages


• Different inversions (gauge configurations) for each operator and 


• At the SU(3)-symmetric point, disconnected        and       consistent with zero

�q �qand

�

�q �q


